Dynamic Pricing and Inventory Management under Fluctuating Procurement Costs

Philip (Renyu) Zhang

(Joint work with Guang Xiao and Nan Yang)

Olin Business School
Washington University in St. Louis

November 11, 2014
Motivation

HP’s Challenge: DRAM memory procurement cost dropped by 90% in 2001 and tripled in 2002 (Nagali et al. 2008).
Motivation

HP’s Challenge: DRAM memory procurement cost dropped by 90% in 2001 and tripled in 2002 (Nagali et al. 2008).

HP’s Solution:

- Procurement Risk Management (PRM) Program
 - Combined sourcing channels: spot, short- and long- term contracts.
 - $425 million cost reduction over a 6-year period.
Motivation

HP’s Challenge: DRAM memory procurement cost dropped by 90% in 2001 and tripled in 2002 (Nagali et al. 2008).

HP’s Solution:

- Procurement Risk Management (PRM) Program
 - Combined sourcing channels: spot, short- and long- term contracts.
 - $425 million cost reduction over a 6-year period.

- Portfolio Management Process
 - Regular price reviews and adjustments.
 - Price changes in response to production and supply chain costs, as well as global economic conditions, including currency volatility.
Motivation (Cont’d)

- Combined multi-sourcing and dynamic pricing strategy is ubiquitous under procurement cost fluctuation.
Motivation (Cont’d)

- Combined multi-sourcing and dynamic pricing strategy is ubiquitous under procurement cost fluctuation.

- Executed by separated units of a firm (procurement and marketing).
Motivation (Cont’d)

- Combined multi-sourcing and dynamic pricing strategy is ubiquitous under procurement cost fluctuation.

- Executed by separated units of a firm (procurement and marketing).

- **Goal of our paper:** To understand how dynamic pricing and dual-sourcing strategies can be coordinated under demand uncertainty and procurement cost fluctuation.
Research Questions

1. What is the impact of procurement cost volatility?
Research Questions

1. What is the impact of procurement cost volatility?

2. How should a firm optimally respond to the cost fluctuation?
Research Questions

1. What is the impact of procurement cost volatility?

2. How should a firm optimally respond to the cost fluctuation?

3. What is the relationship between dynamic pricing and dual-sourcing?
Outline

- Related Literature
- Model
- Impact of Cost Volatility
- Strategic Relationship between Dynamic Pricing and Dual-Sourcing
- Conclusion: Takeaway Insights
Literature Review
Literature Review

- Inventory management under fluctuating costs:
 - Kalymon (1971),
 - Berling and Martínez-de-Albéniz (2011),
 - Chen et al. (2013).

Joint price and inventory control:
- Federgruen and Heching (1999),
- Zhou and Chao (2014).

Our paper: Joint pricing and inventory management under demand uncertainty, cost fluctuation, and dual-sourcing.
Literature Review

- **Inventory management under fluctuating costs:**
 - Kalymon (1971),
 - Berling and Martínez-de-Albéniz (2011),
 - Chen et al. (2013).

- **Joint price and inventory control:**
 - Federgruen and Heching (1999),
 - Zhou and Chao (2014).
Literature Review

- Inventory management under fluctuating costs:
 - Kalymon (1971),
 - Berling and Martínez-de-Albéniz (2011),
 - Chen et al. (2013).

- Joint price and inventory control:
 - Federgruen and Heching (1999),
 - Zhou and Chao (2014).

- Our paper: Joint pricing and inventory management under demand uncertainty, cost fluctuation, and dual-sourcing.
Model Formulation: Basics

- T—period stochastic inventory system, labeled backwards, with discount factor $\alpha \in (0, 1)$.

- Objective: to maximize the total expected discounted profit over the planning horizon under demand uncertainty and cost fluctuation.
Model Formulation: Basics

- T—period stochastic inventory system, labeled backwards, with discount factor $\alpha \in (0, 1)$.

- Objective: to maximize the total expected discounted profit over the planning horizon under demand uncertainty and cost fluctuation.

- Dynamic price adjustment in each period.
Model Formulation: Basics

- T-period stochastic inventory system, labeled backwards, with discount factor $\alpha \in (0, 1)$.

- Objective: to maximize the total expected discounted profit over the planning horizon under demand uncertainty and cost fluctuation.

- Dynamic price adjustment in each period.

- Dual-sourcing:
 - Spot market: immediate delivery.
 - Forward-buying contract: postponed delivery.
Model Formulation: Basics

- T-period stochastic inventory system, labeled backwards, with discount factor $\alpha \in (0, 1)$.

- Objective: to maximize the total expected discounted profit over the planning horizon under demand uncertainty and cost fluctuation.

- Dynamic price adjustment in each period.

- Dual-sourcing:
 - Spot market: immediate delivery.
 - Forward-buying contract: postponed delivery.

- No inventory resale:
 - No room for arbitrage.
Spot-Market Price Fluctuation

\[c_{t-1} = s_t(c_t, \xi_t). \]

- \(\xi_t \): The random perturbation in the cost dynamics.
Spot-Market Price Fluctuation

\[c_{t-1} = s_t(c_t, \xi_t). \]

- \(\xi_t \): The random perturbation in the cost dynamics.

- \(s_t(\cdot, \cdot) > 0 \text{ a.s., and } s_t(\hat{c}_t, \xi_t) \succeq_{s.d.} s_t(c_t, \xi_t) \text{ for any } \hat{c}_t > c_t. \)
Spot-Market Price Fluctuation

\[c_{t-1} = s_t(c_t, \xi_t). \]

- \(\xi_t \): The random perturbation in the cost dynamics.

- \(s_t(\cdot, \cdot) > 0 \) a.s., and \(s_t(\hat{c}_t, \xi_t) \geq_{s.d.} s_t(c_t, \xi_t) \) for any \(\hat{c}_t > c_t \).

- Examples: GBMs, mean-reverting processes.
Forward-Buying Contract

- Mitigate cost volatility at the expense of responsiveness.
Forward-Buying Contract

- Mitigate cost volatility at the expense of responsiveness.

- Forward-buying contract: \((f_t, q_t)\):
 - The firm pays \(f_t q_t\) to the supplier in period \(t^e\);
 - The supplier delivers \(q_t\) to the firm in period \(t^e\);
 - For technical tractability, \(t^e = t - 1\).
Forward-Buying Contract

- Mitigate cost volatility at the expense of responsiveness.

- Forward-buying contract: \((f_t, q_t)\):
 - The firm pays \(f_t q_t\) to the supplier in period \(t^e\);
 - The supplier delivers \(q_t\) to the firm in period \(t^e\);
 - For technical tractability, \(t^e = t - 1\).

- \(f_t = \gamma c_t / \alpha\).
 - Effective unit cost: \(\gamma c_t\).
 - In reality, \(f_t = F_t(c_t)\) is determined through bilateral negotiations.
 - Most results hold for \(f_t = F_t(c_t)\), where \(F_t(\cdot)\) is a positive increasing function of \(c_t\).
Forward-Buying Contract

- Mitigate cost volatility at the expense of responsiveness.

- Forward-buying contract: \((f_t, q_t)\):
 - The firm pays \(f_t q_t\) to the supplier in period \(t^e\);
 - The supplier delivers \(q_t\) to the firm in period \(t^e\);
 - For technical tractability, \(t^e = t - 1\).

- \(f_t = \gamma c_t / \alpha\).
 - Effective unit cost: \(\gamma c_t\).
 - In reality, \(f_t = F_t(c_t)\) is determined through bilateral negotiations.
 - Most results hold for \(f_t = F_t(c_t)\), where \(F_t(\cdot)\) is a positive increasing function of \(c_t\).

- The contract cannot be traded in the derivatives market.
 - Focus on the operational effect of forward-buying.
Demand Model

\[D_t(p_t) = d(p_t) + \epsilon_t. \]

- \(\epsilon_t \): independent continuous random variables, with \(\mathbb{E}\{\epsilon_t\} = 0 \).

- \(d(\cdot) \): strictly decreasing function of \(p_t \), with a strictly decreasing inverse \(p(\cdot) \) in the expected demand \(d_t \) and \(D_t(p_t) \geq 0 \) a.s.
Demand Model

\[D_t(p_t) = d(p_t) + \epsilon_t. \]

- \(\epsilon_t \): independent continuous random variables, with \(\mathbb{E}\{\epsilon_t\} = 0. \)

- \(d(\cdot) \): strictly decreasing function of \(p_t \), with a strictly decreasing inverse \(p(\cdot) \) in the expected demand \(d_t \) and \(D_t(p_t) \geq 0 \) a.s..

- We use \(d_t = d(p_t) \in [d, \bar{d}] \) as the decision variable.
Demand Model

\[D_t(p_t) = d(p_t) + \epsilon_t. \]

- \(\epsilon_t \): independent continuous random variables, with \(\mathbb{E}\{\epsilon_t\} = 0 \).

- \(d(\cdot) \): strictly decreasing function of \(p_t \), with a strictly decreasing inverse \(p(\cdot) \) in the expected demand \(d_t \) and \(D_t(p_t) \geq 0 \) a.s..

- We use \(d_t = d(p_t) \in [d, \bar{d}] \) as the decision variable.

Assumption 1

\[R(d_t) := p(d_t)d_t \] is continuously differentiable and strictly concave.
Sequence of Events

- The firm reviews inventory I_t and spot market price c_t.

Demand D_t realized, revenue collected.

Net inventory fully carried over to the next period:
- Excess inventory fully carried over with unit cost h.
- Unmet demand fully backlogged with unit cost b.
Sequence of Events

- The firm reviews inventory I_t and spot market price c_t.

- The firm makes the following decisions:
 - $x_t - I_t \geq 0$: spot-purchasing, delivered immediately;
 - $q_t \geq 0$: forward-buying, delivered at the beginning of the next period;
 - $d_t \in [d, \bar{d}]$: expected demand in the consumer market.
Sequence of Events

- The firm reviews inventory l_t and spot market price c_t.

- The firm makes the following decisions:
 - $x_t - l_t \geq 0$: spot-purchasing, delivered immediately;
 - $q_t \geq 0$: forward-buying, delivered at the beginning of the next period;
 - $d_t \in [d, \bar{d}]$: expected demand in the consumer market.

- Demand D_t realized, revenue collected.
Sequence of Events

- The firm reviews inventory I_t and spot market price c_t.

- The firm makes the following decisions:
 - $x_t - I_t \geq 0$: spot-purchasing, delivered immediately;
 - $q_t \geq 0$: forward-buying, delivered at the beginning of the next period;
 - $d_t \in [d, \bar{d}]$: expected demand in the consumer market.

- Demand D_t realized, revenue collected.

- Net inventory fully carried over to the next period:
 - Excess inventory fully carried over with unit cost h;
 - Unmet demand fully backlogged with unit cost b.
Bellman Equation

$V_t(l_t|c_t)$ =the maximal expected discounted profit in periods $t, t - 1, \cdots, 1$
with starting inventory level l_t and cost c_t in period t.

Terminal condition: $V_0(l_0|c_0) = 0$.
Bellman Equation

\[V_t(l_t|c_t) = \text{the maximal expected discounted profit in periods } t, t-1, \ldots, 1 \]
with starting inventory level \(l_t \) and cost \(c_t \) in period \(t \).

Terminal condition: \(V_0(l_0|c_0) = 0 \).

Bellman equation:

\[
V_t(l_t|c_t) = c_t l_t + \max_{x_t \geq l_t, q_t \geq 0, d_t \in [d, \bar{d}]} J_t(x_t, q_t, d_t | c_t), \quad \text{where}
\]

\[
J_t(x_t, q_t, d_t | c_t) = -c_t l_t + \mathbb{E}\{p(d_t)D_t - c_t(x_t - l_t) - \gamma c_t q_t - h(x_t - D_t)^+ \\
- b(x_t - D_t)^- + \alpha V_{t-1}(x_t + q_t - D_t | s_t(c_t, \xi_t)) | c_t\}
\]

\[
= R(d_t) - c_t x_t - \gamma c_t q_t + \Lambda(x_t - d_t) + \Psi_t(x_t + q_t - d_t | c_t)
\]

with \(\Lambda(y) = \mathbb{E}\{-h(y - \epsilon_t)^+ - b(y - \epsilon_t)^-\} \),

and \(\Psi_t(y | c_t) = \alpha \mathbb{E}\{V_{t-1}(y - \epsilon_t | s_t(c_t, \xi_t)) | c_t\} \).
Optimal Policy

- \((x_t^*(l_t, c_t), q_t^*(l_t, c_t), d_t^*(l_t, c_t))\): the optimal decisions in period \(t\).
- \(\Delta_t^*(l_t, c_t) := x_t^*(l_t, c_t) - d_t^*(l_t, c_t)\): the optimal safety stock.
Optimal Policy

- \((x_t^*(l_t, c_t), q_t^*(l_t, c_t), d_t^*(l_t, c_t)) \): the optimal decisions in period \(t \).
 - \(\Delta_t^*(l_t, c_t) := x_t^*(l_t, c_t) - d_t^*(l_t, c_t) \): the optimal safety stock.

- The cost-dependent order-up-to/pre-order-up-to list-price policy.

- If \(l_t \leq x_t(c_t) \), order from both channels and charge a list price.

- If \(l_t \in (x_t(c_t), l_t^*(c_t)) \), order via the forward-buying contract only and charge a discounted price.

- If \(l_t \geq l_t^*(c_t) \), order nothing.
Impact of Cost Volatility

- Intuition: higher cost volatility \rightarrow lower profit.
Impact of Cost Volatility

- Intuition: higher cost volatility \rightarrow lower profit.

- Actually, the prediction is reversed:

Theorem 1

For two procurement cost processes $\{c_t\}_{t=T}^{1}$ and $\{\hat{c}_t\}_{t=T}^{1}$, assume that for every $t = T, T - 1, \cdots, 1$, $s_t(c_t, \xi_t)$ and $\hat{s}_t(c_t, \xi_t)$ are concavely increasing in c_t for any realization of ξ_t. The following statements hold:

(a) For any l_t, $V_t(l_t|c_t)$ is convexly decreasing in c_t.

(b) If $\{c_t\}_{t=T}^{1}$ and $\{\hat{c}_t\}_{t=T}^{1}$ are identical except that $\hat{s}_t(c_T, \xi_T) \geq_{cx} s_T(c_T, \xi_T)$ for some c_T and T, $\hat{V}_t(l_t|c_t) \geq V_t(l_t|c_t)$ for each (l_t, c_t) and t, where \geq_{cx} refers to larger in convex order, and $\{\hat{V}_t(l_t|c_t)\}_{t=T}^{1}$ are the value functions associated with $\{\hat{c}_t\}_{t=T}^{1}$.
Impact of Cost Volatility (Cont’d)

- Higher cost volatility \rightarrow higher profit.
Impact of Cost Volatility (Cont’d)

- Higher cost volatility \rightarrow higher profit.

- The subtle timing issue:
 - Decisions made *posterior* to cost realization in each period.

- Respond to cost volatility.
Impact of Cost Volatility (Cont’d)

- Higher cost volatility \rightarrow higher profit.

- The subtle timing issue:
 - Decisions made *posterior* to cost realization in each period.

- Respond to cost volatility.

- Capacity management and newsvendor network models with responsive/postponed pricing: Van Mieghem and Dada (1999), Chod and Rudi (2005) and Bish et al. (2012).
Impact of Cost Volatility: Assumptions

- Risk neutrality is necessary for Theorem 1 to hold.
 - Opposite predictions in the OM-finance literature: risk aversion.
Impact of Cost Volatility: Assumptions

- Risk neutrality is necessary for Theorem 1 to hold.
 - Opposite predictions in the OM-finance literature: risk aversion.

- The concavity of $s_t(c_t, \xi_t)$ generally can be satisfied (e.g., GBMs, mean-reverting processes).
Impact of Cost Volatility: Assumptions

- Risk neutrality is necessary for Theorem 1 to hold.
 - Opposite predictions in the OM-finance literature: risk aversion.

- The concavity of $s_t(c_t, \xi_t)$ generally can be satisfied (e.g., GBMs, mean-reverting processes).

- When $s_t(c_t, \xi_t)$ is not concave in c_t, the result holds for the majority of numerical cases (exceptions may exist when the initial cost is low), in particular when the initial cost follows the stationary distribution.
Optimal Response to Cost Volatility

\[J_t(x_t, q_t, d_t|c_t) = [R(d_t) - c_t d_t] + [\Lambda(\Delta_t) - (1 - \gamma) c_t \Delta_t] \\ + [\Psi_t(\Delta_t + q_t|c_t) - \gamma c_t(\Delta_t + q_t)]. \]

- Three objectives: (a) generating revenue, (b) hedging against demand uncertainty, and (c) speculating on future costs.
Optimal Response to Cost Volatility

\[J_t(x_t, q_t, d_t | c_t) = [R(d_t) - c_t d_t] + [\Lambda(\Delta_t) - (1 - \gamma)c_t \Delta_t] \\
+ [\Psi_t(\Delta_t + q_t | c_t) - \gamma c_t(\Delta_t + q_t)]. \]

- Three objectives: (a) generating revenue, (b) hedging against demand uncertainty, and (c) speculating on future costs.

- Optimal sales price: \(p_t^*(l_t, c_t) \uparrow c_t \). The firm passes (part of) the cost risk to customers.
Optimal Response to Cost Volatility

\[J_t(x_t, q_t, d_t | c_t) = [R(d_t) - c_t d_t] + [\Lambda(\Delta_t) - (1 - \gamma)c_t \Delta_t] \]
\[+ [\Psi_t(\Delta_t + q_t | c_t) - \gamma c_t (\Delta_t + q_t)]. \]

- Three objectives: (a) generating revenue, (b) hedging against demand uncertainty, and (c) speculating on future costs.

- Optimal sales price: \(p_t^*(l_t, c_t) \uparrow c_t \). The firm passes (part of) the cost risk to customers.

- Optimal safety-stock and spot-purchasing: \(\Delta_t(c_t), x_t(c_t) \downarrow c_t \), if \(\gamma \leq 1 \); \(\Delta_t(c_t) \uparrow c_t \), if \(\gamma > 1 \).
Optimal Response to Cost Volatility

\[J_t(x_t, q_t, d_t | c_t) = [R(d_t) - c_t d_t] + [\Lambda(\Delta_t) - (1 - \gamma)c_t \Delta_t] \\
+ [\Psi_t(\Delta_t + q_t | c_t) - \gamma c_t(\Delta_t + q_t)]. \]

- Three objectives: (a) generating revenue, (b) hedging against demand uncertainty, and (c) speculating on future costs.

- Optimal sales price: \(p_t^*(l_t, c_t) \uparrow c_t \). The firm passes (part of) the cost risk to customers.

- Optimal safety-stock and spot-purchasing: \(\Delta_t(c_t), x_t(c_t) \downarrow c_t, \) if \(\gamma \leq 1; \Delta_t(c_t) \uparrow c_t, \) if \(\gamma > 1. \)

- Optimal forward-buying quantity:
 Generally not monotone in \(c_t \).
Strategic Relationship between Dynamic Pricing and Dual-Sourcing

- Dynamic pricing and dual-sourcing may be either strategic complements or substitutes.
Strategic Relationship between Dynamic Pricing and Dual-Sourcing

- Dynamic pricing and dual-sourcing may be either strategic complements or substitutes.

- **Complements:** if the additional sourcing channel is forward-buying.

- **Substitutes:** if the additional sourcing channel is spot-purchasing.
Strategic Relationship between Dynamic Pricing and Dual-Sourcing

- Dynamic pricing and dual-sourcing may be either strategic complements or substitutes.

- **Complements**: if the additional sourcing channel is forward-buying.

- **Substitutes**: if the additional sourcing channel is spot-purchasing.

- **Rationale**: dynamic pricing mitigates the demand uncertainty risk, but the additional sourcing channel may dampen or intensify the demand uncertainty risk.
Conclusion: Takeaway Insights

- A risk-neutral firm benefits from the procurement cost volatility.
Conclusion: Takeaway Insights

- A risk-neutral firm benefits from the procurement cost volatility.
 - Timing of decision making and uncertainty realization.
Conclusion: Takeaway Insights

- A risk-neutral firm benefits from the procurement cost volatility.
 - Timing of decision making and uncertainty realization.

- Dynamic pricing and dual-sourcing may be either complements or substitutes.
Conclusion: Takeaway Insights

- A risk-neutral firm benefits from the procurement cost volatility.
 - Timing of decision making and uncertainty realization.

- Dynamic pricing and dual-sourcing may be either complements or substitutes.
 - Dynamic pricing dampens both demand and cost risks, while dual-sourcing may either mitigate or intensify the demand risk.
Thank you!

Questions?